Count Data Regression Using Series Expansions: with Applications
نویسنده
چکیده
A new class of parametric regression models for both underand overdispersed count data is proposed. These models are based on squared polynomial expansions around a Poisson baseline density. The approach is similar to that for continuous data using squared Hermite polynomials proposed by Gallant and Nychka and applied to ®nancial data by, among others, Gallant and Tauchen. The count models are applied to underdispersed data on the number of takeover bids received by targeted ®rms, and to overdispersed data on the number of visits to health practitioners. The models appear to be particularly useful for underdispersed count data. # 1997 by John Wiley & Sons, Ltd.
منابع مشابه
Estimation of Count Data using Bivariate Negative Binomial Regression Models
Abstract Negative binomial regression model (NBR) is a popular approach for modeling overdispersed count data with covariates. Several parameterizations have been performed for NBR, and the two well-known models, negative binomial-1 regression model (NBR-1) and negative binomial-2 regression model (NBR-2), have been applied. Another parameterization of NBR is negative binomial-P regression mode...
متن کاملBayesian Method of Moments (bmom) Analysis of Parametric and Semiparametric Regression Models
The Bayesian Method of Moments is applied to semiparametric regression models using alternative series expansions of an unknown regression function. We describe estimation loss functions, predictive loss functions and posterior odds as techniques to determine how many terms in a particular expansion to keep and how to choose among diierent types of expansions. The developed theory is then appli...
متن کاملFitting of Count Time Series Models on the Number of Patients Referred to Addiction Treatment Centers in Semnan County
Abstract. Count data over time are observed in many application areas. Many researchers use time series patterns to analyze this data. In this paper, the poisson count time series linear models and negative binomials on this type of data with the explanatory variables are studied. The Likelihood analysis and the evaluation of count time series model based on generalized linear models are pres...
متن کاملEigenfunction Expansions for Second-Order Boundary Value Problems with Separated Boundary Conditions
In this paper, we investigate some properties of eigenvalues and eigenfunctions of boundary value problems with separated boundary conditions. Also, we obtain formal series solutions for some partial differential equations associated with the second order differential equation, and study necessary and sufficient conditions for the negative and positive eigenvalues of the boundary value problem....
متن کاملNonharmonic Gabor Expansions
We consider Gabor systems generated by a Gaussian function and prove certain classical results of Paley and Wiener on nonharmonic Fourier series of complex exponentials for the Gabor expansion. In particular, we prove a version of Plancherel-Po ́lya theorem for entire functions with finite order of growth and use the Hadamard factorization theorem to study regularity, exactness and deficienc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997